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Abstract. Starting from successful self-consistent mean-field models, this paper discusses why and how to
go beyond the mean-field approximation. To include long-range correlations from fluctuations in collective
degrees of freedom, one has to consider symmetry restoration and configuration mixing, which give access
to ground-state correlations and spectroscopy.

PACS. 21.60.-n Nuclear structure models and methods – 21.60.Jz Hartree-Fock and random-phase ap-
proximations – 21.10.-k Properties of nuclei; nuclear energy levels – 21.10.Dr Binding energies and masses

1 Self-consistent mean-field models

Self-consistent mean-field models are one of the standard
approaches in nuclear structure theory, see ref. [1] for a
recent review. For heavy nuclei, they are the only fully
microscopic method that can be applied systematically.

1.1 Ingredients

There are three basic ingredients of self-consistent mean-
field models: (see ref. [1] for references)
1) The many-body state is assumed to be an indepen-

dent-quasi-particle state of the BCS type. Degrees of free-
dom are a set of orthonormal single-particle states φk with
corresponding operators âk and occupation amplitudes vk.
The generalized one-body density matrix is idempotent

R2 = R =

(

ρ κ
−κ∗ 1− ρ∗

)

=

(

〈â†â〉 〈ââ〉
〈â†â†〉 〈ââ†〉

)

. (1)

2) An effective interaction tailored for the purpose of
mean-field calculations has to be used. It incorporates the
short-range correlations induced by the strong interaction.
The actually used effective interactions are parametrized
and adjusted phenomenologically. They are formulated ei-
ther as a density-dependent two-body force or as an energy
functional E depending on the density matrix in the spirit
of density functional theory.
3) The equations-of-motion for the single-particle

states and the occupation amplitudes are determined self-
consistently from the variation of the total energy adding
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constraints on the particle number

δ
(

E − λN
〈

N̂
〉

− λZ
〈

Ẑ
〉

+ · · ·
)

= 0. (2)

This leads to the Hartree-Fock-Bogoliubov (HFB) equa-
tions, or, using a common approximation, the HF+BCS
equations. The Lagrange parameters λi are adjusted to
meet conditions for the constraint, for example 〈N̂〉 = N
for the average neutron number. The main ingredients of
the HFB equations are the single-particle Hamiltonian and
the pairing field, which are obtained as first functional
derivatives of the total energy

ĥ =
δE

δρ
, ∆̂ =

δE

δκ∗
. (3)

1.2 Typical applications

Mean-field models can be used to describe a manifold of
phenomena and experimental data:
– Nuclear masses or binding energies, and all difference
quantities derived from them, like one- and two-particle-
separation energies, Q values for α and β-decay.
– Deformation energy surfaces can be mapped by
adding one or more constraints on a multipole moment
−λ`m〈Q̂`m〉 to the variational equation (2).
– The radial density distribution and quantities derived
from it as the mean-square radii of the charge and neutron
distributions, the neutron skin, the surface thickness, or
the full charge form factor at low momentum transfer.
– The spatial density distribution, for example multipole
moments of well-deformed nuclei.
– The very concept of a single-particle energy, associated

with the eigenvalues of the single-particle Hamiltonian ĥ,
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eq. (3), refers to an underlying mean-field picture of the
nucleus. Experimental single-particle energies, however,
are obtained as an energy difference between the ground-
state of an even-even nucleus on one the hand and states
in adjacent odd-A nuclei on the other, the latter having
a different structure due to the unpaired nucleon, which
adds significant corrections.
– Rotational bands of well-deformed nuclei can be ob-
tained by adding a constraint on one component of the an-
gular momentum −ωi〈Ĵi〉 to the variational equation (2),
which is equivalent to solving the mean-field equations in
a rotating frame. This adds inertial forces to the mod-
eling, which align the angular momenta of the single-
particle states and weaken pairing with increasing total
angular momentum.

1.3 Prospects

– Mean-field models offer an intuitive interpretation of
their results in terms of the shapes of a nuclear liquid and
of shells with single-particle states.
– The full model space of occupied states can be used, re-
moving any distinction between core and valence particles
and the need for effective charges.
– This allows the use of a universal effective interac-
tion, universal in the sense that it can be applied for
all nuclei throughout the periodic chart. There is, how-
ever, no consensus among practitioners of the field about
a unique effective interaction. Many different functional
forms have been proposed —for example non-relativistic
Skyrme and Gogny interactions and finite-range as well as
point-coupling relativistic interactions —and parameteri-
zations thereof to be found in the literature [1].

1.4 Difficulties and problems

– An independent particle description establishes a body-
fixed intrinsic frame of the nucleus. The connection of
mean-field results to spectroscopic observables in the labo-
ratory frame of reference relies on additional assumptions
like the rigid-rotor model, which are not valid, for exam-
ple, at small deformation or in soft nuclei.
– By construction, a mean-field state breaks symmetries
in the laboratory frame. Examples are given in table 1.
On the one hand, symmetry breaking is a desired fea-
ture of mean-field models. In the language of the spheri-
cal shell model (using a spherically symmetric Slater de-
terminant as reference state) the symmetry-breaking in
mean-field models adds the most important n-particle-n-
hole and particle-particle correlations to the modeling at
very moderate computational cost. On the other hand, a
broken symmetry mixes excitations related to the symme-
try operator into the mean-field state. For example, bro-
ken rotational symmetry mixes states with different values
of J2, i.e. the members of a rotational band. Broken parity
mixes states of opposite parity, broken translational sym-
metry admixes states with different center-of-mass mo-
tion. Restoring the symmetries decomposes the mean-field
states into states with proper quantum numbers.

Table 1. Examples for symmetries broken in the intrinsic
frame of the nucleus.

Symmetry Generator Which states

U(1) gauge particle number pairing
translational momentum finite nuclei
rotational angular momentum deformation
parity parity octupole deformation

– The mean-field approach becomes ill-defined when the
binding energy changes slowly with a collective degree of
freedom. This is a common situation in transitional nuclei.
– It is tempting to associate two or more local minima
in the potential energy landscape that are separated by a
substantial barrier with different physical states, so-called
shape coexistence. This interpretation might not always
be valid as two different mean-field states are not orthog-
onal, and they might well be coupled by the interaction.

2 Going beyond the mean field

The idea is to start from self-consistent mean-field mod-
els as described above, keeping their advantages and suc-
cesses, and to resolve the remaining problems in an ef-
ficient, systematic and consistent manner. This will add
long-range correlations to the model, where “long-range”
does not refer to the range of an interaction, but to col-
lective correlations that involve the nucleus as a whole.
Two kinds of correlations have to be distinguished. As

outlined above, a mean-field state describes static corre-
lations related to deformation or pairing. These have to
be distinguished from the dynamical correlations we will
discuss below. They are also related to deformation and
pairing, but describe fluctuations in collective degrees of
freedom. The dynamical correlations cannot be described
by a state for which R2 = R holds and therefore require
to go beyond the mean field.

2.1 Projection methods

As a first-order approximation to projection, corrections
to the energy are used in self-consistent mean-field mod-
els. Most prominent examples are the center-of-mass cor-
rection and the Lipkin-Nogami scheme to calculate the
occupation amplitudes. Both are approximations to pro-
jection before variation (on zero momentum and particle
number, respectively), when consistently included in the
variation, eq. (2). Sometimes a rotational correction to
the binding energy is also applied. The corrections work
best when the symmetry breaking is large, which is often
not the case. It is, therefore, desirable to restore broken
symmetries of the mean-field states exactly by projecting
on good quantum numbers after variation. The projection
might be combined with some of the correction schemes.
Eigenstates of the particle-number operator N̂ , with

eigenvalue N0, are obtained applying the particle-number
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Fig. 1. Decomposition of the energy into angular-momentum
components (upper left), collective wave function (upper right)
and energy (lower right) for the mixed J = 0 states, and com-
plete spectrum of low-J states (lower left) for 188Pb. All curves
are plotted against the mass quadrupole deformation β2 of the
unprojected mean-field states.

projection operator

P̂N0
=
1

2π

∫ 2π

0

dφN eiφN (N̂−N0) , (4)

while eigenstates of the angular momentum operators Ĵ2

and Ĵz, with eigenvalues J(J + 1) and M , are obtained
applying the operator

P̂ J
MK=

2J + 1

16π2

∫ 4π

0

dα

∫ π

0

dβ sin(β)

∫ 2π

0

dγ D∗J
MK R̂, (5)

where R̂ = e−iαĴze−iβĴye−iγĴz is the rotation operator
and D∗J

MK a Wigner function. Both depend on the Euler

angles α, β, γ. P̂ J
MK picks the component with angular

momentum projection K along the intrinsic z-axis. The
projected state is then obtained by summing over all K
components with weights determined from a variational
equation. Note that P̂ J

MK is not a projection operator in
the strict mathematical sense [2].
In the current implementation of our model, we start

with HF+BCS or HFB states |q〉 for which we assume
even particle numbers, good parity, axial and time-reversal
symmetry. This allows for the analytical evaluation of the
α and γ integration in eq. (5) at the price of restricting
the projected states to positive parity P = +1, even in-
teger total angular momentum J , and intrinsic angular
momentum projection K = 0

|JMq〉 =
P̂ J
M0 P̂N0

P̂Z0
|q〉

〈q|P̂ J
00 P̂N0

P̂Z0
|q〉1/2

. (6)

As an example, the upper left panel of fig. 1 shows the de-
composition of the particle-number projected energy curve

for 188Pb (thin solid line) into its angular-momentum com-
ponents (thick curves). All energies are normalized to the
spherical state. The intrinsic spherical state is a pure
J = 0 state by construction. The difference between the
mean-field and projected J = 0 states is the rotational
energy. It increases rapidly to about 3MeV at small β2,
and then grows at a slower rate with deformation.
The example of 188Pb demonstrates that projection

after variation of the mean-field ground-state might not
lead to the lowest projected state as it is not a variational
procedure. Instead, one has to consider a set of states with
different deformations and search for the energy minimum.
In particular, the lowest projected state of a nucleus with a
spherical mean-field ground-state is usually obtained from
a deformed state. For such nuclei, there is the additional
peculiarity that one obtains two J = 0 minima at small
oblate and prolate deformation, see fig. 1. Closer exami-
nation reveals that they represent the same state, as their
overlap is very close to one.

2.2 Variational configuration-mixing

The ambiguities of many near-degenerated states with dif-
ferent deformation can be overcome by diagonalizing the
Hamiltonian in the space of these states within the Gen-
erator Coordinate Method (GCM). The mixed projected
many-body state is set-up as a coherent superposition of
projected mean-field states |JMq〉 with different intrinsic
deformations q

|JMk〉 =
∑

q

fJk(q) |JMq〉, (7)

where fJ,k(q) is a weight function which is determined
from the stationarity of the states

δ

δf∗Jk

〈JMk|Ĥ|JMk〉

〈JMk|JMk〉
= 0, (8)

which leads to the Hill-Wheeler-Griffin equation [3]

∑

q′

[〈

JMq|Ĥ|JMq′
〉

− Ek
〈

JMq|JMq′
〉]

fJ,k
(

q′
)

= 0,

(9)that gives a correlated ground state for each value of J ,
and, in addition, a spectrum of excited states. The weight
functions fJk(q) are not orthonormal. A set of orthonor-
mal collective wave functions gJk(q) = 〈JMk|q〉 in the
basis of the intrinsic states is obtained from a transforma-
tion involving the square root of the norm kernel.
The actual choice for the generator coordinate de-

pends on the mode to be described, for example, the
quadrupole or octupole moment of the mass density, or
the monopole moment of the pair density, which then
delivers a description of quadrupole, octupole or pairing
vibrations, respectively. Examples for such calculations,
without angular-momentum projection, can be found in
ref. [4]. Several generator coordinates can be easily com-
bined for multi-dimensional calculations, although this has
been rarely done so far. For all results shown here, the ax-
ial quadrupole moment of the mass distribution serves as
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the generator coordinate. Hence, the excited states are ei-
ther quadrupole vibrational or rotational states. The right
panels of fig. 1 show as an example the mixing of the
J = 0 states with different quadrupole moments in 188Pb.
The upper right panel shows the collective wave functions
g0k(q) for the five lowest collective J = 0 states, the lower
right panel the corresponding energies drawn in the same
line style by horizontal lines centered at the average de-
formation of the mean-field states they are composed of
together with the projected J = 0 energy curve. The en-
ergies are now normalized to the projected GCM ground
state. Combining such calculations for all values of J gives
then the the entire spectrum of low-J states, most of which
can be clearly grouped into rotational bands, see the lower
left panel of fig. 1.
The projected energy curves in fig. 1 are the diago-

nal matrix elements entering the Hill-Wheeler equation.
They should not be confused with a collective potential,
which does not exist in the GCM framework —nor does
a collective mass. Both appear in approximations like the
Bohr-Hamiltonian [5,6]. Owing to the energy gain from
configuration mixing, the GCM ground state is located
below the energy curves.
Projection is a special case of the GCM, where exactly

degenerate states are mixed. The generators of the group
involved define the collective path, and the weight func-
tions are determined by the restored symmetry. Angular-
momentum projection is part of the quadrupole correla-
tions, as it mixes states with different orientations of the
quadrupole tensor. Therefore the GCM mixing of states
with respect to the quadrupole moment should be per-
formed together with angular-momentum projection.
For a state resulting from the mixing of different mean-

field states, the mean particle number is not anymore
equal to the particle number of the original mean-field
states. Projection, as done here, eliminates this prob-
lem, otherwise a constraint on the particle number has
to be added to the Hill-Wheeler-Griffin equation (9). We
also perform an approximate particle-number projection
before variation in the Lipkin-Nogami approach to en-
sure that pairing correlations are present in all mean-
field states.
The angular-momentum projected GCM allows to cal-

culate transition moments directly in the lab frame for
in-band and out-of-band transitions, for example B(E2)
values

B
(

E2; J ′k′ → Jk
)

=

e2

2J ′ + 1

+J
∑

M=−J

+J ′

∑

M ′=−J ′

+2
∑

µ=−2

|〈JMk|Q̂2µ|J
′M ′k′〉|2. (10)

The B(E2) value scales with mass and angular mo-
mentum. A more intuitive measure is the transitional
quadrupole deformation obtained from the B(E2) using
the static rotor model

β
(t)
2

(

J ′k′ → Jk
)

=
4π

3R2A

√

B(E2; Jk → J ′k − 2)

(J 0 2 0|J − 2 0)2e2
, (11)

Fig. 2. Experimental (left) and calculated (right) excita-
tion spectra and selected transition quadrupole moments

β
(t)
2 (J ′

k′ → Jk) for
188Pb.

with R = 1.2A1/3. The method gives also the spectro-
scopic quadrupole moments in the lab frame

Qs(Jk) = 〈J M=J k|Q̂20|J M=J k〉, (12)

which again scale with mass and angular momentum and
might be given in a more intuitive measure through a di-
mensionless deformation parameter

β
(s)
2 (Jk) = −

2J + 3

J

√

5

16π

4π

3R2A
Qs(Jk), (13)

again with R = 1.2A1/3 and assuming axial symmetry.
For a given rotational band in the rigid rotor, one has

β
(t)
2 (J + 2 → J) ≈ β

(s)
2 (J + 2) ≈ β

(s)
2 (J) for J > 0.

Deviations from this behavior point at a more complicated
situation. An example is given in fig. 2. For high-J states,

the β
(t)
2 values within a band are constant, while with

the mixing of the low-lying states they are significantly
decreased.

3 Examples of applications

All results discussed here were obtained by configura-
tion mixing of particle-number and angular-momentum-
projected HF+BCS states with different axial mass
quadrupole moments. We chose the Skyrme interactions
SLy4 or SLy6 [7] for the particle-hole channel and a
density-dependent delta pairing interaction (“surface pair-
ing”) [8] for the particle-particle channel. A group in
Madrid uses the Gogny force in a similar model [9].

3.1 Spectroscopy

Results for spectroscopic observables obtained with our
method for 24Mg have been published in [10], for 16O
in [11], for 32S, 36,38Ar, 40Ca in [12], for 186Pb in [13],
for 182–194Pb in [14], and for 240Pu in [15].



M. Bender and P.-H. Heenen: Microscopic models for exotic nuclei 523

Fig. 3. Mean-field deformation energy curves for Pb isotopes.

Fig. 4. Lowest collective states in the Pb isotopes.

The neutron-deficient Pb isotopes show unique spec-
troscopic features, which are associated with a spherical
ground state, an oblate minimum present above A = 188
but disappearing below, a prolate minimum present below
A = 188 and disappearing above, and a superdeformed
minimum, that is confirmed down to A = 192, see fig. 3.
Projected GCM then delivers collective states that can
be associated with a spherical ground state and excited
prolate, oblate and superdeformed bands. There is a nice
qualitative agreement with experimental data, see fig. 4,
but the calculated transition energies within the bands are
too dilute, see also fig. 2 for 188Pb. For more details and
further discussion of other observables, see refs. [13,14].

An example with very different spectroscopic features
is the well-deformed nucleus 240Pu, see ref. [15]. Pro-
jection does not alter the topology of the potential en-
ergy curve, but gives about 3MeV additional binding for
the ground state and about 4MeV for the fission iso-
mer which has now an excitation energy that is 1MeV
lower compared to mean-field calculations. Projection low-
ers the outer barrier as much as 2MeV. GCM does not
substantially mix states. Again, the excitation energies
within the rotational bands are too large, while the de-
formation is well described on all levels of approxima-
tion: we obtain β2 = 0.29 for the mean-field ground

state, β
(t)
2 (J + 2 → J) = 0.30 for all E2 transitions

within the ground-state band, where all excited states
have spectroscopic quadrupole moments corresponding to

β
(s)
2 (J) = 0.30, in agreement with the experimental value
of 0.29 deduced from the B(E2; 0+1 → 2+1 ).

Fig. 5. Upper two panels: difference between calculated and
experimental masses. Lower two panels: mean-field deforma-
tion energy Edef and beyond-mean-field quadrupole correlation
energy Ecorr. All panels share the same energy scale in MeV.

3.2 Mass systematics

Mass formulas based on self-consistent mean-field models
using Skyrme interactions have reached a quality where
they compete with the best available microscopic-macros-
copic models [16]. A key to this success is to add various
correlation energies phenomenologically through correc-
tion terms, as a Wigner energy term or a rotational cor-
rection. There is no correction for vibrations, as it cannot
be formulated in terms of a simple expression. Our model
allows us to consistently calculate the quadrupole corre-
lation energy from symmetry restoration and fluctuations
of the quadrupole moment.
For the calculation of a mass table including cor-

relations, it was necessary to use an approximation to
the method described above. For this purpose, we im-
plemented the Gaussian overlap approximation (GOA)
into our method [17]. While most applications of the
GOA use it as an intermediate step to derive a Bohr-
Hamiltonian [5,6], we use the GOA solely as a numerical
tool: a topological GOA to estimate the integrals over Eu-
ler angles from two or three exactly calculated points, and
a second GOA to construct the matrices entering the Hill-
Wheeler equation from diagonal matrix elements and ma-
trix elements between nearest neighbors only. The GOA
puts emphasis on the correlated 0+ ground state; most
information for spectroscopy is lost. Particle-number pro-
jection is still performed exactly. The accuracy of the GOA
is better than 300 keV, which is sufficient for a study of
the systematics of quadrupole correlation energies, which
are an order of magnitude larger.
Figure 5 shows some results [18]. The overall erro-

neous trend with A, that was already observed in ref. [19],
can be removed with a slight refit of the coupling con-
stants of SLy4 on the mean-field level [20]. The quadrupole
correlation energy improves the masses by reducing the
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Fig. 6. Two-proton gap δ2p for Sn and Pb isotopes.

oscillations between the closed shells, but without remov-
ing them completely. Still, there is a substantial improve-
ment, which becomes obvious when looking at energy dif-
ferences like the two-proton gap δ2p(N,Z) = E(N,Z −
2) − 2E(N,Z) + E(N,Z + 2), see fig. 6. Spherical mean-
field calculations (open squares) give near-constant δ2p
in accordance with the stable Z = 82 shell. Allowing
for deformation (open triangles) and adding correlations
(open circles) substantially reduces δ2p for mid-shell nu-
clei far from 208Pb, in agreement with experiment (full
diamonds). Similar results were obtained in ref. [21].
The lower panels of fig. 5 compare mean-field defor-

mation and beyond-mean-field quadrupole correlation en-
ergies. While heavy nuclei are dominated by the deforma-
tion energy, light nuclei are dominated by the correlation
energy.

4 Summary and outlook

Projection and configuration mixing significantly improve
the modeling of nuclei in self-consistent mean-field ap-
proaches and give access to spectroscopy. Masses are sig-
nificantly improved around closed shells, and the overall
structure of collective bands is reproduced, even in com-
plicated systems like neutron-deficient Pb isotopes where
many structures coexist. On the quantitative level, nei-
ther masses nor excitation spectra are yet described with
the desired precision. This might be for a number of ori-
gins. There will be imperfections of the effective interac-
tions that we use. Some aspects of the effective interac-
tion might be much more sensitive to spectroscopy than
to the ground states they are fitted to. For consistency,
the effective interaction should be refitted including the
correlations. To obtain a more robust extrapolation of the
interaction into the unknown, it is desirable to establish
a link between the effective interaction needed for calcu-
lations as done here, and more ab-initio methods.
On the other hand, the modeling of the configuration

mixing might still have some deficiencies as well. There
are additional modes like pairing vibrations, triaxial
quadrupole deformations, or octupole vibrations, which
might play a role for certain nuclei and, therefore, should
be included in a unified model. The determination of the

collective path has to be re-examined, and diabatic states
may play a role in some situations. An interesting in-
sight comes from self-consistent, cranked mean-field cal-
culations: for 240Pu, the excitation energies from cranked
HFB are in much better agreement with experiment than
our projected values when using the same interaction [15].
Cranked mean-field states break time-reversal invariance
and have the proper angular momentum on the average,
which might be crucial for excitation energies. A generali-
zation of our model to use cranked states as a starting
point for projected GCM is currently underway. This will
also allow to describe nuclei with an odd nucleon number
in our framework. A lot of work is left for the future, but
present results are most encouraging.

The results discussed here were obtained in collaboration with
G.F. Bertsch, P. Bonche, T. Duguet, and H. Flocard. We
thank T. Duguet and R.V.F. Janssens for critical reading of
the manuscript. MB thanks for the warm hospitality at the
Service de Physique Nucléaire Théorique at the Université Li-
bre de Bruxelles, Belgium, and the Institute for Nuclear The-
ory, Seattle, USA, where parts of the research presented here
were carried out. This work was supported in parts by the
U.S. Department of Energy, Office of Nuclear Physics, under
Grant W-31-109-ENG-38 (Argonne National Laboratory) and
the Belgian Science Policy Office under contract PAI P5-07.
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